Failure Criteria of Gas-Infiltrated Sandy Shale Based on the Effective Stress Principle
نویسندگان
چکیده
Pore gas has a significant influence on rock strength. This study performed triaxial compression tests of gas-infiltrated sandy shale samples to investigate the strength characteristics under gas pressures of 0 and 2 MPa. The effective stress coefficient was evaluated while considering the gas and solid coupling effect, and was found to decrease with increasing confining pressure. The calculated and different assumed coefficient values (0 and 1) were applied to obtain the effective principal stress. The experimental results would serve as fundamental strength data for fitting analysis in failure criterion work. The Mohr-Coulomb, Hoek-Brown, Drucker-Prager, linear Mogi, and non-linear Mogi criteria were modified based on the effective stress principle of porous rock. In addition, the RMSE, cohesion, and internal friction angle were utilized for a quantitative criterion comparison. The results showed that the Mohr-Coulomb, Drucker-Prager, and linear Mogi failure criteria led to higher errors, whereas the Hoek-Brown criterion gave an apparent distortion as a result of the empirical strength parameters. Moreover, the non-linear Mogi criterion showed a good fit. The predicted strength was overestimated when α = 0 and underestimated when α = 1, with a more accurate strength estimated when the effective stress coefficient was calculated using the effective stress principle.
منابع مشابه
New empirical failure criterion for shale
A new failure criterion was presented to predict the ultimate strength of shale under the triaxial and polyaxial state of stress. A database containing 93 datasets was obtained from the results of the uniaxial, triaxial, polyaxial compressive tests, an indirect tensile test was collected from reliable references, and this test was carried out on the shale samples taken from the southwestern oil...
متن کاملExperimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale
Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Incr...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملEvaluation of Effective Parameters on the Underground Tunnel Stability Using BEM
There are various parameters that affect stability and expansion of failure zones in under pressure tunnels. Among the important parameters that affect failure zones around the tunnels are cohesion and internal friction angle of the rock mass. In addition, the cross sectional shape is the considerable point in failure distribution around the tunnels. The stress analysis method is one of the app...
متن کاملShale Stability: Drilling Fluid Interaction and Shale Strength
This paper presents main results of a shale stability study, related to the understanding of shale/ fluid interaction mechanisms, and discusses shale strength correlation. The major shale/ fluid interaction mechanisms: Capillary, osmosis, hydraulic, swelling and pressure diffusion, and recent experimental results are discussed. Factors affecting the shale strength are discussed, and a sonic com...
متن کامل